

SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE OUTLINE:	NETWORK ANALYSIS
CODE NO.:	ELR 309
PROGRAM:	ELECTRICAL/ELECTRONIC TECHNOLOGY
SEMESTER:	FIVE
DATE:	APRIL 1997
PREVIOUS OUTLINE DATED:	SEPTEMBER 1993
AUTHOR:	DOUG FAGGETTER
	NEW: REV.:2
APPROVED:	ABLIGO-TEXTE GUA LAMES LANELEU EVUOS (S
	COORDINATOR DATE
	MAY 30/87
	DEAN DATE

NETWORK ANALYSIS ELR 309 COURSE NAME

PREREQUISITE (S): MTH 577

PHILOSOPHY/GOALS:

THE STUDENT WILL STUDY AC & DC CIRCUITS IN-DEPTH USING NETWORK THEOREMS, DIFFERENTIAL EQUATIONS, LAPLACE TRANSFORMS, FOURIER ANALYSIS USING TRADITIONAL SOLUTION TECHNIQUES AS WELL AS THE APPLICATION OF COMPUTER SOLUTION TECHNIQUES .

STUDENT PERFORMANCE OBJECTIVES:

UPON SUCCESSFUL COMPLETION OF THIS COURSE, THE STUDENT WILL BE ABLE TO:

- 1) DEFINE AND DISCUSS BASIC CIRCUIT LAWS AND ANALYSIS METHODS.
- 2) SOLVE INITIAL, FINAL AND FIRST-ORDER CAPACITIVE AND INDUCTIVE CIRCUITS.
- 3) ANALYZE CIRCUITS WITH LAPLACE TRANSFORMS.
- 4) PERFORM WAVEFORM ANALYSIS USING MATHCAD.
- 5) PERFORM CIRCUIT ANALYSIS USING SPICE.

ELR 309 CODE NUMBER

TOPICS TO BE COVERED:

- 1) OVERVIEW OF BASIC CIRCUIT LAWS.
- 2) INTRODUCTION TO CIRCUIT ANALYSIS METHODS.
- 3) APPLICATION OF CIRCUIT ANALYSIS TO CAPACITIVE AND INDUCTIVE CIRCUITS.
- 4) SOLVING FIRST ORDER DIFFERENTIAL CIRCUITS.
- 5) CIRCUIT ANALYSIS WITH LAPLACE TRANSFORMS.
- 6) INTRODUCTION TO TRANSFER FUNCTIONS.
- 7) INTRODUCTION TO SINUSOIDAL STEADY-STATE ANALYSIS.
- 8) INTRODUCTION TO FREQUENCY RESPONSE ANALYSIS
- 9) INTRODUCTION TO WAVEFORM ANALYSIS.

REQUIRED STUDENT RESOURCES (INCLUDING TEXTBOOKS & WORKBOOKS)

1) L.P. HUELSOMAN, BASIC CIRCUIT THEORY TORONTO, PRENTICE-HALL, 1991 (THIRD EDITION)

ADDITIONAL RESOURCES

- 1) R.B. ANDERSON, THE STUDENT EDITION OF MATHCAD, VER.2.0 TORONTO, ADDISON WESLEY, 1989
- 2) P.W.TUINENGA, SPICE A GUIDE TO CIRCUIT SIMULATION AND ANALYSIS USING PSPICE, TORONTO, PRENTICE HALL, 1988

ELR 309 CODE NUMBER

METHOD(S) OF EVALUATION

THE FINAL GRADE FOR THE COURSE WILL BE DERIVED FROM THE RESULTS OF TEACHER ASSIGNED TESTS, AND ASSIGNMENTS:

THE GRADING SYSTEM USED WILL BE AS FOLLOWS:

A+	>= 90%	CONSISTENTLY OUTSTANDING ACHIEVEMENT
A	80-89%	EXCELLENT ACHIEVEMENT
В	70-79%	ABOVE AVERAGE ACHIEVEMENT
С	55-69%	SATISFACTORY ACHIEVEMENT
R		REPEAT

ELR 309 CODE NUMBER

LEARNING ACTIVITIES

REQUIRED RESOURCES

1.0 BASIC CIRCUIT LAWS

1.1) DEFINE THE BASIC CIRCUIT QUANTITIES | TEXT: CHAPTER #2
AND STATE THE SYMBOLS & UNITS USED |
TO REPRESENT THEM.

1.2) DEFINE THE BASIC ACTIVE AND PASSIVE | MODELS AND SKETCH THEIR SCHEMATIC | FORMS.

- 1.3) EXPLAIN CLASSIFICATIONS OF NETWORK | ELEMENTS.
- 1.4) STATE AND APPLY NETWORK TOPOLOGY | LAW: 1) OHM'S LAW
 - 2) KIRCHHOFF'S CURRENT LAW
 - 3) KIRCHHOFF'S VOLTAGE LAW
- 1.5) DEFINE NETWORK ELEMENTS:
 - 1) RESISTOR
 - 2) SOURCE
 - 3) NON-IDEAL SOURCE
- 1.6) DETERMINE THE EQUIVALENT RESISTANCE |
 OF RESISTIVE NETWORKS IN SERIES AND |
 PARALLEL CONNECTIONS.
- 1.7) STATE AND APPLY THE VOLTAGE AND CURRENT DIVIDER RULES TO COMPLEX RESISTIVE NETWORKS.
- 1.8) DEFINE THE FORM TYPES OF CONTROLLED |
 (OR DEPENDANT) SOURCES AND DISCUSS |
 THEIR SIGNIFICANCE IN CIRCUIT |
 MODELLING.

TEXT: CHAPTER #3

2.0) CIRCUIT ANALYSIS METHODS

- 2.1) DETERMINE THE CURRENT, VOLTAGE AND | POWER IN A CIRCUIT USING MESH | ANALYSIS.
- 2.2) DETERMINE THE CURRENT, VOLTAGE AND POWER IN A CIRCUIT USING NODAL ANALYSIS.
- 2.3) APPLY SOURCE TRANSFORMATIONS TO SIMPLIFY INDEPENDENT SOURCE MODELS.
- 2.4) APPLY SOURCE TRANSFORMATIONS TO SIMPLIFY DEPENDENT SOURCE MODELS.
- 2.5) DETERMINE THE THEVENIN AND NORTON EQUIVALENT CIRCUITS FOR A GIVEN CIRCUIT.

ELR 309 CODE NUMBER

LEARNING ACTIVITIES REQUIRED RESOURCES

3.0 CAPACITIVE AND INDUCTIVE TRANSIENTS | TEXT: CHAPTER #4 AND EQUIVALENT CIRCUITS

- 3.1) DEFINE THE BASIC CAPACITIVE INTEGRO -DIFFERENTIAL EQUATIONS & WAVEFORMS|
- 3.2) DEFINE THE COMMONLY USED TIME FUNCTIONS USED IN NETWORK ANALYSIS.
- 3.3) DEFINE THE BASIC INDUCTIVE INTEGRO-DIFFERENTIAL EQUATIONS & WAVEFORMS.
- 3.4) DETERMINE SERIES AND PARALLEL COMBINATIONS OF CAPACITORS AND INDUCTORS.
- 3.5) STATE AND APPLY THE VOLTAGE-CURRENT| RELATIONSHIPS FOR MUTUAL INDUCTANCE

4.0) FIRST ORDER DIFFERENTIAL CIRCUITS | TEXT: CHAPTER #5

- 4.1) SOLVING FIRST ORDER DIFFERENTIAL CIRCUITS EXCITED BY INITIAL CONDITIONS.
- 4.2) SOLVING FIRST ORDER DIFFERENTIAL CIRCUITS EXCITED BY SOURCES.
- 4.3) SOLVING FIRST ORDER DIFFERENTIAL CIRCUITS EXCITED BY INITIAL CONDITIONS AND SOURCES.
- 4.4) SOLVING FIRST ORDER DIFFERENTIAL CIRCUITS EXCITED BY CERTAIN RESPONSES AND INITIAL CONDITIONS. |

des autracy regard est

5.0) SECOND ORDER DIFFERENTIAL CIRCUITS | TEXT: CHAPTER #6

- 5.1) SOLVING SECOND ORDER DIFFERENTIAL CIRCUITS EXITED BY INITIAL CONDITIONS - CASE 1 & 11.
- 5.2) SOLVING SECOND ORDER DIFFERENTIAL CIRCUITS EXITED BY INITIAL CONDITIONS - CASE 111
- 5.3) SOLVING SECOND ORDER DIFFERENTIAL CIRCUITS EXITED BY INITIAL CONDITIONS AND SOURCES.
- 5.4) SOLVING HIGHER ORDER DIFFERENTIAL CIRCUITS EXITED BY CERTAIN RESPONSES AND INITIAL CONDITIONS.

6.0 CIRCUIT ANALYSIS WITH LAPLACE TRANSFORMS

- 6.1) DEFINE AND EXPALIN THE PURPOSE OF THE LAPLACE TRANSFORMS AS APPLIED TO CIRCUIT ANALYSIS.
- 6.2) STATE THE LAPLACE TRANSFORMS FOR THE MOST COMMON FUNCTIONS ENCOUNTERED IN CIRCUIT ANALYSIS.
- 6.3) STATE THE FORMS OF THE MOST COMMON LAPLACE TRANSFORM OPERATIONS.
- 6.4) DETERMINE THE LAPLACE TRANSFORM OF A GIVEN TIME FUNCTION.
- 6.5) DETERMINE THE INVERSE TRANSFORM OF | OF A GIVEN S-DOMAIN FUNCTION.

7.0 ADDITIONAL TOPICS TO BE COVERED IF TIME PERMITS

TRANSFORMED NETWORKS TRANSFER FUNCTIONS POLES & ZEROS COMPLEX S-PLANE BODE PLOT FILTER THEORY

TEXT: CHAPTER #9

TEXT: CHAPTER #7,8,10

0) SECOND CEDER DIFFERENTIAL CINCETTS (TEXT: CHAPTER #6

5.1) SOLVENG SECOND ORDER DIFFERENTIAL
CORCUITS EXITED BY INSTEAD
CONTESTENS - CASE 1 & 12

5.2) SCUVING SECOND ORIGE DIFFERENTIAL CIRCUITS SXITED BY INTIES.

SIL BEAC - EMOTTIONS

5.3) SOLVING SECOND ORDER DIFFERNTIAL CIRCUITS EXITED BY INITIAL

5.4) SOLVING HIGHER CROSS STEFFRENTIELS CIRCULTS EXITED BY CERTAIN RESPONSES AND INTERIAL CONSTITIONS.

CA COTTANTO TOUR

CIRCULT ANALYSIS WITH LARLACE TRANSFORMS

6.1) DEFINE AND EXPANSIONES AS APPLIED (1.6

SISTANSA EZULATU OL MANAST MINISAT MET STATO I

THE MOST COMMON FORCTIONS

6.3) STATE THE FORMS OF THE MOST CORNOR

STEERING THE LAPLACE TRANSFORM OF

6.5) DETERMINE THE THVETOE PRANCEORE OF OUT OF A CIVEN S-DOMAIN FUNCTION.

AT A THE BOTHS ENTER STREET

ADDITIONAL TOPICS TO BE COVERED IF TIME PERMITS

TRANSFORMED NETWORKS
TRANSFER FUNCTIONS
TOLES & REWOS
COMPLEX S-PLANS
ROOF PLOT